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A highly diastereoselective pyrrolidine-promoted dibromination of alkenes by combination of NBS and
succinimide is presented. The pyrrolidine-mediated dibromination of alkenes is higly anti-selective and
gives the corresponding products in moderate to high yields and up to >25:1 dr.
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Dihalo derivatives are important compounds in organic synthesis,
especially in pharmaceutical chemistry.1 In the case of dibromination
of organic substrates, the electrophilic addition of molecular Br2 to
unsaturated carbon–carbon bonds is still the best choice. However,
bromine is hazardous, difficult to handle, and a volatile liquid,2 which
limits its applications. There have been some recent developments
concerning the use of other dibrominating reagents.3,4 For example,
Salazar et al. developed pentylpyridinium tribromide as the source
of Br2 for mono- or dibrominations.3a Recently, Shi and co-workers4a

reported that the combination of N-bromosuccinimide (NBS) and LiBr
was an efficient method for the dibromination of unsaturated car-
bon–carbon bonds. Moreover, organic amides have been shown to
be potent organocatalysts for the bromoacetoxylation of alkenes
using NBS as the electrophilic bromine source.4c

In the research field of organocatalysis, amine-catalyzed dom-
ino, cascade and tandem reactions have been developed.5 In this
context, we recently found that chiral pyrrolidines catalyze enan-
tioselective aminosulfenylation of a,b-unsaturated aldehydes
using N-(benzylthio)succinimides as both a nucleophilic and an
electrophilic reactant (Eq. 1).6 The reaction proceeds very well in
the presence of a secondary amine catalyst together with a cata-
lytic amount of succinimide providing the corresponding amino-
sulfenylation products in high yields and enantioselectivities.
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Thus, we decided to investigate the reaction between a,b-unsat-
urated aldehydes and NBS in the presence of a secondary amine
catalyst and succinimide. Herein, we present a highly diastereose-
lective method for the organocatalytic dibromination of alkenes
using NBS as the source of bromine.

In an initial experiment, we found that pyrrolidine catalyzed the
dibromination of trans-cinnamaldehyde (1a) using pure, freshly
recrystallized NBS (2.2 equiv) as the dibrominating reagent in
CHCl3 (Table 1, entry 1). To our delight, the corresponding product
3a was formed in 17% conversion with excellent anti-diastereose-
lectivity (>25:1 dr). As in our previously reported a-aminosulfeny-
lation reaction, the addition of succinimide (2) improved the
conversion (entry 2). The reaction did not work in MeOH (entry
3) or in THF. A significant improvement in conversion and reaction
time was achieved by increasing the temperature of the reaction
mixture. For example, increasing the temperature to 70 �C led to
the formation of 3a in more than 90% conversion with >25:1 dr
(anti/syn) within 2 h (entry 6). However, a small amount of elimi-
nation product 4a was also formed.

Moreover, decreasing the amount of succinimide (2) to
0.2 equiv did not affect the conversion (95%) and product 3a was
obtained with >25:1 dr (anti/syn) (entry 8). Replacing pyrrolidine
with Et3N as the organic mediator significantly decreased the con-
version (entry 9) and only a trace amount of 3a was formed when
no organic base was added (entry 10). We also compared our
method to that reported by Shi and co-workers.4 Thus, the addition
of LiBr to the reaction mixture was investigated (entries 11 and
12). We found that no reaction occurred when pyrrolidine was
not added (entry 11) and 80% conversion was observed in the pres-
ence of pyrrolidine and LiBr. However, the diastereoselectivity of
the reaction decreased to a moderate 4:1.

Encouraged by these results, we decided to investigate the
scope and limitations of the dibromination of a,b-unsaturated
aldehydes 1a–f using 2.2 equiv of NBS, 0.2 equiv of succinimide
(2), and 0.2 equiv of pyrrolidine (Table 2).
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Table 1
Screening of the reaction conditions for the dibromination of trans-cinnamaldehyde (1a)a
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Entry NBS (equiv) 2 (equiv) Concd (M) Solvent Time (h) Temp (�C) Conv. of 3ab (%) dr of 3ab (anti/syn) 3a:4ab

1 2.2 0 0.07 CHCl3 15 rt 17 >25:1 >25:1
2 2.2 1.5 0.07 CHCl3 15 rt 57 >25:1 >25:1
3 2.2 1.5 0.07 MeOH 15 rt 0 — —
4 2 0.5 0.5 CHCl3 24 rt 58 >25:1 70:30
5 4 0.5 0.5 CHCl3 24 rt 71 >25:1 82:18
6 2.2 0.5 0.5 CHCl3 2 70 >90 >25:1 83:17
7 2.2 0.5 5 CHCl3 4 rt 74 >25:1 85:15
8 2.2 0.2 0.5 CHCl3 2 60 95 >25:1 79:21

9c 2.2 0.5 0.5 CHCl3 1 60 29 >25:1 >25:1
10d 2.2 0.5 0.5 CHCl3 1 60 <5 — —
11e 2 1.5 0.1 THF 15 rt 0 — —
12f 2 1.5 0.1 THF 15 rt 80 4:1 >25:1

a Experimental conditions: To a stirred solution of trans-cinnamaldehyde (0.5 mmol) in 1–7 mL of solvent were added successively NBS (recrystallized from boiling water),
succinimide, and pyrrolidine. The reaction vial was sealed and the solution was stirred under the conditions displayed in the Table.

b Determined by 1H NMR analyses of the crude reaction mixture.
c 20 mol % of Et3N was used instead of pyrrolidine.
d Reaction run without pyrrolidine.
e 2 equiv of LiBr added and no pyrrolidine.
f 2 equiv of LiBr was added.

Table 2
Dibromination of a,b-unsaturated aldehydes 1a–1fa

R H
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Entry R Product Yieldb (%) drc (anti/syn)

1d 1a 5a 58 >25:1

2e

Br
1b 5b 30 >25:1

3f 1c 5c 35 >25:1

4 n-Bu 1d 5d 62 >25:1
5 Me 1e 5e 55 >25:1
6 Et 1f 5f 53 >25:1

a Experimental conditions: To a stirred solution of aldehyde (0.5 mmol) in CHCl3 (1 mL) were added successively NBS (1.1 mmol, recrystallized from boiling water),
succinimide (0.1 mmol), and pyrrolidine (0.1 mmol). The reaction vial was sealed and the solution was heated at 60 �C for 2 h.

b Isolated yield of the corresponding alcohol 5 after in situ reduction of product 3.
c Anti/syn ratio determined by 1H NMR analysis.
d 8% of reduced elimination product 4a was isolated.
e 11% of reduced elimination product 4b was isolated.
f 16% of reduced elimination product 4c was isolated.
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The dibromination of a,b-unsaturated aldehydes 1a–f pro-
ceeded with excellent diastereoselectivity and the corresponding
alcohols 5a–f were obtained in moderate to good yields after
in situ reduction with NaBH4.7 For example, the dibromination of
1a and subsequent reduction gave the corresponding product 5a
in 58% yield with >25:1 dr (anti/syn) (entry 1). In the case of the
dibromination of a,b-unsaturated aldehydes 1 with an aryl substi-
tuent, a small amount of the corresponding elimination product 4
was also formed (entries 1–3). In the case of enals 1 with aliphatic
substituents, only the corresponding dibrominated alcohols 5d–f
were formed (entries 4–6).

With these results in hand, we next investigated whether we
could catalyze an enantioselective version of this reaction using
chiral pyrrolidine derivatives as catalysts for the dibromination



Table 3
Dibromination of simple alkenes 1i–na
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3
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Ph
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3 75f —

6 1n 3n

Br
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6 72 >10:1

a Experimental conditions: To a stirred solution of alkene 1 (0.5 mmol) in CHCl3 (1 mL) were successively added NBS (1.1 mmol, recrystallized from boiling water),
succinimide (0.1 mmol), and pyrrolidine (0.1 mmol). The reaction vial was sealed and the solution was heated at 60 �C for the time displayed in the Table.

b Isolated yield of pure anti-isomer 3.
C Anti/syn ratio determined by 1H NMR analysis.
d 5 equiv of NBS was used.
e Product 3k can decompose on silica gel, hence the reaction was purified by extraction with pentane.
f Combined yield of compounds 3m and 3m0 .

Figure 1. ORTEP picture of 2,3-dibromo-3-phenylpropan-1-ol 5a.
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of cinnamaldehyde (1a) or crotonaldehyde (1e). However, the cor-
responding products were formed in similar yields to those ob-
served when pyrrolidine was used and with only <5% ee.
Dibromination of cinnamaldehyde (1a) in the presence of (S)-2-
[diphenyl(trimethylsilyloxy)methyl]pyrrolidine (20 mol %) gave
the corresponding product 5a, after in situ reduction, in 45% yield
with >25:1 dr and almost 0% ee. Based on these results, we suggest
that the pyrrolidine derivatives were not able to control the stere-
oselectivity by changing the iminium activation of the enals. We
also found that the dibromination process was highly regioselec-
tive. As shown in the dibromintaion of citral (1g) (trans/cis = 1:1),
only selective bromination of the electron-rich double bond was
+ HBr

Br

Br

1i

3i

(possibly derived
from decomposition of NBS
and 2 or pyrrolidine)

rolidine activation.
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achieved (Eq. 2a). This was also the case for the reaction with enal
1h where only the terminal olefin was dibrominated (Eq. 2b).
Moreover, the dibromination of a mixture of olefinic substrates
1a and 1i gave only the product 3i derived from alkene 1i (Eq. 3).
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With this information in hand, we realized that the scope of this
organocatalytic reaction could be broadened to other types of al-
kenes. Thus, we investigated the dibromination of other alkenes
1 using our optimized reaction conditions (Table 3).

Our metal-free system had a broad substrate scope and both
acyclic and cyclic alkenes gave the corresponding dibromination
products 3i–3n in moderate to high yields.8 For example, the
dibrominations of terminal alkenes 1j and 1i gave the corre-
sponding dibromo compounds 3j and 3i in 62% and 47% yields,
respectively (entries 1 and 2). The dibromination of 1,2-disubsti-
tuted alkenes 1k and 1l gave the corresponding products 3k and
3l in 90% and 53% yield and with high diastereoselectivity,
respectively (entries 3 and 4). In the case of alkene 1m, the
monobrominated product 3m0 was also formed together with
3m in a 6:5 ratio (entry 5). Moreover, the dibromination of cyl-
cohexene 1n gave the corresponding anti-product 3n in 72%
yield and >10:1 dr (entry 6).

The relative stereochemistry of compounds 3 was anti as estab-
lished by X-ray analysis of alcohol 5a9 (Fig. 1). The mechanism of this
dibromination process is still under investigation. However, molec-
ular Br2 may be the brominating agent4a,10 and can be formed under
the present reaction conditions. Moreover, pyrrolidine can activate
bromination reagents11 such as NBS by making them more electro-
philic. Therefore, another possibility is that pyrrolidine activates
NBS via the catalytic cycle shown in Scheme 1. As a comparison,
NBS is activated in this manner by organic amidines during bromo-
acetoxylation of alkenes.4c

In summary, we have reported a convenient and highly diaste-
reoselective organocatalytic method for the dibromination of al-
kenes using pyrrolidine and its derivatives as catalysts and NBS
as the Br source. The corresponding dibromo products were iso-
lated in moderate to high yields and with up to >25:1 dr (anti/
syn). It is noteworthy that the use of NBS together with an organic
catalyst makes it possible to avoid the use of molecular Br2, which
makes the reaction safer and more environmentally friendly. Fur-
ther elaboration of this transformation and a study of its mechanis-
tic aspects are ongoing in our laboratory.
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